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Metastable lattice of droplets in phase separating polymer blends
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Phase separation in a polymer mixture with an off-critical composition is described by a Ginzburg-Landau
Hamiltonian that contains both cubic and quartic terms in the deviation of composition from its mean value in
the homogeneous phase. Our analysis suggests that when a blend is brought in the vicinity of the spinodal, the
initial homogeneous phase becomes unstable against the formation of a metastable lattice of spherical droplets
whose lifetime diverges in the limit of infinite molecular weight. The composition of the droplets approaches
that of the background phase and their size diverges with the approach to the critical point, but the composition
contrast is enhanced and droplet radii become comparable to polymer dimensions, away from criticality. The
connection between our predictions and the results of recent neutron scattering experiments is discussed, and
new experiments that could probe the proposed droplet lattice are proposed.
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I. INTRODUCTION two-dimensional polymer filni6].
Motivated by these observations, in this paper we reex-

The study of phase separation in polymer blends is imporamine the nature of metastability in polymer blends. Our
tant for elucidating the fundamental limitations on the prac-analysis shows that when a blend with an off-critical compo-
tically important task of mixing different polymers in order sition is quenched into the vicinity of the spinodal, the clas-
to obtain composites with tunable material properties. It issical nucleation scenario breaks down and the initial homo-
usually thought that the physical mechanisms governing ingeneous phase becomes unstable with respect to the
compatibility and segregation in polymer blends are quiteformation of droplets with size comparable to polymer di-
similar to those in mixtures of small molecules and that themensions, and with composition that differs from that of the
differences between the two cases are mainly quantitativequilibrium daughter phase. In Sec. Il we introduce the stan-
and can be summarized as follows. dard de Gennes—Flory—Huggins free energy of an asymmet-

(1) Because high molecular weight reduces the entropy ofic polymer blend, which accounts for entropy of mixing,
mixing, the region of the phase diagram in which two poly-interaction, and entropic elasticity of polymer chajiii§ and
mers can be mixed in all proportions is strongly reducedupon some transformations derive the Ginzburg-Landau
compared to that of their monomeric counterparts. (GL) Hamiltonian that describes the energy cost of devia-

(2) Since each polymer is permeated by many others, théons from the homogeneous state. We analyze the thermo-
fluctuations of relative concentration of the two componentsdynamics of phase separation, review the main results of the
in the mixture are suppressed and mean field approximationdassical theory of nucleation for shallow quenches into the
have a much larger domain of applicability than in mixturesmetastable region in vicinity of the binodal, and discuss the
of small moleculeg1]. anticipated breakdown of this theory for deeper quenches. In

An indication that something peculiar takes place in poly-Sec. Ill we show that the cubic term in the GL Hamiltonian
mer blends came from light scattering studies of phase sepaan be replaced by a position-dependent fluctuating tempera-
ration following a temperature quench at an off-critical com-ture field and rewrite the free energy of the blend in a form
position [2,3]. Initially, the peak of the scattered intensity familiar from the theory of superconductivity in a random
moved with time to progressively longer wavelengths, exhibfield. This random field acts as an effective potential well
iting the coarsening of the demixing pattern characteristic othat leads to the appearance of a localized spherical droplet
spinodal decompositiof4]. However, at later times it be- solutions. The single droplet free energy is expressed as the
came pinned at some wavelength whose value depended sam of droplet energy and density of states contributions
the location of the quench and on the molecular weight of thélogarithmic corrections due to Goldstone modes are derived
constituents, and no further change with time was observeth Appendix A). Using the ground state dominance approxi-
[2]. Direct visualization by computer-enhanced microscopymation we derive an explicit solution for the droplet profile
showed an arrested pattern that consisted of nearly sphericahd its energyan exact solution obtained by numerical mini-
droplets of roughly equal siZe3] (in this particular experi- mization of the energy functional is presented in Appendix
ment, the droplets eventually coalesced and phase separatiBj We show that in the vicinity of the spinodal, the distri-
continued following a long incubation peripdAttempts to  bution function of isolated droplets has a sharp peak at a
explain the observed pinning invoked slowing down of poly-well-defined droplet radius that is bounded below by the
mer diffusion due to entropic barrier created for the transporpolymer radius of gyration and diverges as the critical com-
of long chains across sharp interfaces between phasgosition is approached. Since the depth of the corresponding
separated domaingbs], and preferential interaction of the minimum of the free energy diverges with the square root of
bounding surfaces with one of the components in a quasithe degree of polymerization, we conclude tia@t droplet
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solutions correspond to long-lived metastable states of the §
blend, and thatb) droplets will appear spontaneously every- ]
where in the system upon quench into the vicinity of the 71\
spinodal. In order to gain insight about the many-droplet ]
solution, in Sec. IV we analyze the interaction between two
isolated droplets. At large separations, the interaction is of
repulsive Yukawa type, with screening radius given by the INd

correlation length, and thus droplets are expected to form 1.5

until the free energy gain due to their self-energy is balanced ]

by interdroplet repulsions. Variational minimization of the ) o 05 5 0 0
many-droplet free energy shows that the “lattice of droplets” ) ’ ) )
picture i_s self-consistent in the_ sense that the interldroplet FIG. 1. Phase diagram fat=0.5, $=0.5. The binoda(1) and
spacing is much larger than their radius and that the interacspinggal(2) lines are shown. The arrow indicates the position on
tion between droplets has only a minor effect on their inter{he phase diagram into which the system is quenched.

nal concentration profiléat least in the vicinity of the spin-

oda). Finally, in Sec. V we summarize the main results of takes place in equilibrium. The coexistence lifnoda) in

this work and discuss the limitations of our approach. Thehe y-¢ plane that describes the volume fractions of compo-
connection between our results and available neutron scattgfant 1 in the two coexisting phases in equilibrium is found

ing data is discussed and new experiments that could test Oy, minimizing the function
ideas are proposed.

AN

1 1 1
Il. PHASE SEPARATION: THERMODYNAMICS Nx(o,¢')= —,< 1- 5) + —
AND NUCLEATION b= (p— ')
Consider a two-component polymer blend whéteand y ¢’In¢—l+ 1-¢' Inl_ ¢’ @
ON are the respective numbers of statistical segments per 1) 0 1-¢

chain (0 is the asymmetry paramete#=1 for a symmetric
blend anda is a microscopic length scale, of the order of thewith respect to¢'. The value of the Flory parameter at the

statistical segment lengttfor simplicity, we use a single pinodal, yuin=x[ &, b min(#)], is obtained by substituting the
length scale to represent both the Kuhn length and the size 9fsyiting/ . (the volume fraction in the phase that coexists

the lattice sit¢ The effective “Hamiltonian” of the blend is . L= .
the de Gennes—Flory—Huggins free energy that can be Writ\llzvIth a phase of volume fractios = ¢) back into Eq{4) (see

ten as a functional of the volume fractions of the two com- Igl.nlz).rder to transform the square gradient term in &
ponentsg, = ¢ and ¢,=1— ¢, respectively[7], d 9 :

into the standard GL expression, we substitdte sir’e,

H dx[a2 (V)2 where 0< ¢<7/2 and get
== =5 7 tU(¢)— , 1
i e e RAUCI T H o adla
—=f—3 —(V )2+ U(sirte)—usirfe|. (5
wherekg is the Boltzmann constant affds the temperature, keT a®l 2

and the integration extends over the volume of the blend. _ .
The potentialU(¢) is given by the Flory-Huggins expres- Expandinge about its mean value,
sion for the free energy per sif8]

b 1

L p=arcsiny ¢+ a2y (6)
Uld)=ind+ 5 IN(L-d)+xd(l-¢), (2

we can write the Hamiltonian dd4= HO(E) +AH[ ] where

where the Flory interaction parametefT) is, in general, a H (g) Vv
function of the temperaturd. The chemical potential of 0 =—[U(¢p)—udl, 7
component 1, is defined by=dU/d¢|,-5, and thus, keT a3

- ZIna 1 n(l—a o0 d 3 with V the volume of the blend. The HamiltoniakH that
VR A VLU C R R NI 2 AP (3 gescribes the deviations from the homogeneous solution has

the GL form
where ¢ is the mean volume fraction of component 1. In- )
spection of Eq(2) shows that, fory<<0, the entropy of mix- AH[y] :f dx a—(V¢)2+ Z¢2_ %¢3+ %w ®)
ing dominates over the effective repulsive interaction be- kgT 2 2 6 247 |

tween the two components and they are miscible in all
proportions. For positive and sufficiently large valuesygf  The coefficients of the expansidio fourth order iny) in the
repulsion dominates and demixing of the two componentsabove expression are
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4 _ - the system is quenched into a metastable or an unstable re-
=@t 09— 2xNS(1- )], gion of the phase diagram. In the latter case, the initial ho-
mogeneous phase decays via small amplitude, delocalized
fluctuations whose amplitude and wavelength grow with

8a’" N2 g2 time until final phase separation is reached. For quenches
9s N\/g(l—g)[(l )= 047, ® into the metastable region, the initially homogeneous state
decays by the formation of large amplitude, localized fluc-
16a3 L o tuations that correspond to a saddle poinAéf[ /], Eq.(8).
94:,\,5(1_5)[(1_¢)2(4¢‘1)+94’2(3—44’)]- Near the binodalr=7,($)=g%/(3g,), this saddle point
(critical nucleusg configuration of the fields is given by
The above expansion is valid fa,>0. For #=0.5 this
condition holds in the range 0.23$<<0.81. Yor(1) = ¥ (14)
The mean field spinoddthe boundary of stability of the en exg(r—Ry)/&E]+1°
spatially homogeneous state of the blemidefined by the
condition7=0, or equivalently by where r is the radial coordinate and we defineR.
=(ar3)(r,— 7)1, é=ar, Y2, andy’' =2g5/g,. Inspec-
_ i 0 tion of Eq. (14) shows that this configuration describes a
XsN=—=+—"—. (10 . : .
2¢ 2(1—¢) spherically symmetric nucleus with a large core of radds

and nearly constant volume fractiaf' that coincides with
The binodal and the spinodal coincide at the critical pointthat of the new(daughtey phase, and a narrow interface of
defined byg;=0 (Fig. 1). This yields the critical volume width £ in which this density changes to that of the mother

fraction phase(in the vicinity of the binodalR.> ¢). Notice that this
solution corresponds to a saddle point of the GL Hamiltonian
— 1 in the sense that while nonspherical nuclei have a higher
¢°:1+ Jo' (1) energy than spherical ones, a nucleus of critical size has the

highest energy among all spherical nuclei with radii either

Consistent with the fact that the Landau expansion hold§maller or larger tham:. In order to reach the thermody-
only in the vicinity of the critical point, we substituteg ~ Namically favored macroscopic daughter phase, any small
= xsp in the expressions for the coefficierys and g, that nuc[qu created in the process of thermal fluctuations from
will be treated as temperature-independent parameters in th@e initial homogeneous mother phase has to pass through
following [the remaining temperature dependence is due té1€ energy barrier associated with the critical configuration
the fact thatr is a function of x(T), Eq. (9)]. In general, _(nuc_:lel with R>R; grow without limit). This energy barrier
fluctuations shift the spinodal of the spatially homogeneouds given by,

system to some finite= 75 where the Ginzburg numbert

defines the boundary of applicability of the mean field theory A o3 |p— pc| N2

(the Ginzburg region However, it can be showfv,9] that AH[Yenl= 57 %15 5~ > (19

76— 0 in the limitN— o and therefore, in polymer systems, 947y (1—7/7p)°  (1—7/7,)

the mean field approximation is expected to yield accurate

results even in the vicinity of the spinodal. Since the probability of formatiofin the process of ther-
The fluctuational contribution to the total free energy of mal fluctuation$ of the critical nucleus from the initial ho-

the blend is given by mogeneous phase is proportional to £xAH[ ¢..l/ksT}, the

fact that the height of the barrier diverges at the binodal

AH[ ¢] means that the initial homogeneous phase is metastable un-

AF:_kBTInj D:pex;{ N keT ) der shallow quenches beyond the binodal, and that critical
nuclei will form on experimentally accessible time scales
Inspection of Eq(6) shows that the field; is related to the only for sufficiently deep quenches. In low molecular weight
deviation of the volume fraction of component 1 from its mixtures (N=1), one reaches the so called cloud point at

(12

mean value, which critical nuclei form and grow throughout the system
immediately following the quench. This happens at some
5¢=2a3’2~/$(1—$) . (13 finite value of 1-7/7,, when the height of the barrier be-

comes comparable T, and at the same time.= ¢ (for
In addition to small fluctuations about the homogeneousmall molecules, away from the critical point, the correlation
state in the one-phase region of the phase diagram, the @Qength approaches their microscopic dimensiynsignaling
Hamiltonian governs the kinetics of phase separation and thine breakdown of the critical nucleus solution, Etd). The
formation of macroscopic density inhomogeneities followingcloud point defines the experimentally observable limit of
a quench into the two-phase region> xpin - According to  metastability and is often considered as an operational defi-
the common view, segregation takes place via nucleation anuition of the spinodal. This can be understood theoretically if
growth or via spinodal decomposition, depending on whethewe notice that in mixtures of small molecules the Ginzburg
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number is large and the mean field spinodal is shifted conThe approximate equality, E¢16), holds if the functional

siderably towards the metastable region. integral is evaluated by steepest descghis procedure is
A different situation arises in polymer blends in which the valid for § 7, [>1, wheren,,(x) is the function that mini-

correlation length is large even away from criticality, mizesS 7]).

~aN'2. In this case the critical nucleus scenario also breaks We now substitute Eq(16) into Egs.(8) and (12), and

down at some finite value of-17/7,, when the size of the find

nucleus becomes of the order of its interfacial widfR, (

~ ' i i i ier i H
£). Since, at this point the height of the energy barrier is of AF= —kgT In< f Dz//ex;{ B A lﬂ])> , (19

orderkg TNY?>kgT, it does not represent the limit of meta- kgT

stability and the onset of spinodal decomposition is pre-

empted by the appearance of a new metastable phase. Thisjfere H L] is the effective Hamiltonian of a/*-type
a consequence of the fact that since the Ginzburg numbgheory in an external field,

vanishes in the limit of larg#|, the mean field spinodal is not

shifted by fluctuations and therefore the phase diagram con- H,[ ] —n , & ,. 94,
tains a finite regior{somewhere in the vicinity of line 2 in KT :J’ dX{Tlﬂ + 5 (V) 5,9
Fig. 1) in which critical nuclei are no longer formed but the B

system is still stable against small amplitude, long wave-thjs completes our demonstration of the connection between
length fluctuations. This metastable phase corresponds t0gyr theory and that of superconductivity in a random field.

true local minimum ofAH[y] and consists of a lattice of The analogy extends even further since in both problems the
droplets of well defined size whose composition differs fromginzpurg number is vanishingly small due to the existence of
that of the final equilibrium phase and varies continuouslyarge intrinsic length scalegthe polymer radiusaN*2 in

. (20

with the distance from the center of the droplet. blends and the correlation length of Cooper pairs in super-
conductivity). However, even though the Hamiltonian in Eq.
Ill. SINGLE DROPLET SOLUTION (20) is identical to that in Ref[11], the free energies differ

since in our case one carries out a thermal average of the

In the following we show that there is a range of param-partition function over the random fielg, while in Ref.[11]
eters in which the partition function of a system described bythe random field is quenched and therefore one averages the
the Hamiltonian, Eq(8), is dominated by stable droplet con- logarithm of the partition function. We show in the following
figurations(instantong 10]). In our analysis we will use the that the typical configuration of the field 7(x) corresponds
analogy between our problem and superconductivity in &o a spatial distribution of potential wells of sufficient depth,
random field[11] where droplets of the superconducting and that the fields(x) is localized in these potential wells.
phase form in a sample with quenched spatial distribution o€Consequently, the density field can be described as a collec-
transition temperatures. Notice that both models reduce t@on of droplets.
the y* theory of second order phase transitions if one Consider a single droplet configuratigr{x) localized in
switches off the cubi¢in ¢) term in our Hamiltonian and the a potential well, — Narop(X) aroundx=0. Following Ref.
random field in Ref[11]. In order to transform our theory to [11] we assume tha) one can treat the problem perturba-
the form of Ref.[11], we get rid of the cubic term in the tively (for smallg,) by expanding the solution in eigenfunc-
Hamiltonian, Eq.(8), by introducing an auxiliary fieldy(x) tions of the linear problem defined by the quadratic part of
(n=0), through the functional integral, the Hamiltonian, Eq(20) and that(b) one can keep only the

ground state contribution to this expansion. This allows one
1 93
—_ 2 =3 _— 3
<ex;{2fdxmp)>77 ex;{GJdsz

to write a variational solution in the form
h(X) = Cotho(X), (21)
where we defined the functional average of an arbitrary funcWhereyo(x) is an eigenfunction of the Schitmger equation
that corresponds to the smallest eigenvalyeof the Schre

: (16)

tional A[ 7],
7] dinger operatotr— 74,0,—a?V? (the kernel of the quadratic
part ofH,[ 1),
fDneXp(—S[n])A[n] 2p2
- - = . 22
<A>77: ’ (17) (7 Ndrop— a V) o= Notho (22)
f Dnexp—S7]) As usual, the eigenfunction is normalized as
with f dxg(x)=1. (23

2 Substituting y=cq 1 into the Hamiltonian, Eq(20), and
S 7]= —zf dx73(x). (18)  minimizing the resulting expression with respect to the am-
3 plitude c, yields,
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J dx%

Clearly, a solution exists only faxy<<0. Inserting this ex-
pression into Eq(20), we obtain a variational estimate for

the energy of a droplet
ool [ot]

Edrop( 0) _g)\_
kgT

The single droplet contribution to the partition function

[the expression in the brackets in Ef9)] can be written as

f Dl,/IeX[( _ H”[¢]>:GX[{— Edrop()\o)

kgT kgT
where the energy of the droplet in a given energy wall,,
is

- 6)\0

(29)

(25

} (26

Edro p( )\O) _
kgT

|ﬂH AUl
’ " kgT

(27)
Substituting Eq(26) and the left-hand side of the equality

f NS\ —No[ 7)) =1 (29

into the integrand of Eq(19), we find the free energy of a
droplet,

Edrop()\)”

0
AFgrop=—kgT In’ fwd)\g()\)exp{ T kT

(29)
where the density of stateg\) is defined as

gN)=(N=No(D)]),- (30

PHYSICAL REVIEW E 65 061803

Substituting Eq(33) into Eqg. (31) we arrive at the expres-
sion

)= al2g3io(X)

Inserting Eq.(34) into Eq. (22) with eg=¢, we find the
self-consistent equation for the functigry(x),

(7—al2ggpo—a2V2) o=\ .

Clearly, the eigenfunctiol, corresponding to the lowest
eigenvalue is spherically symmetric and depends only on the
radial coordinater,. The Lagrange multipliex is found from
the normalization condition, E@23). It is convenient to in-
troduce the dimensionless distarteer 7— \/a, and define
the dimensionless functiog(t) by

2
Yo(r) = \[;

With these substitutions, E35) is recast into the dimen-
sionless form,

Mdro p(X (34)

(35

T—N\
Js3

rr—x

a

X (36)

(37

where prime denotes differentiation with respectt.tdhis
equation is solved subject to the boundary conditions

X'+2x It=x=x*

x(t—2)=0, x'(0)=0, (39
where the first condition corresponds to a localized droplet
state and the second one ensures Widl) is finite. The
above equation is solved by numerical integration of Eq.
(37). The asymptotic form of this solution &1 is

x(H)~t"te™! (39

At smallt<1 the solution is given by the series expansion

We proceed to calculate the density of states by steepest

descent evaluation of the functional integral that defines the

above averaggEg. (17)]. Minimizing §[ »], Eq. (18), and
taking into account the conditiony(7) =\, by introducing a
Lagrange multiplier, we find the following equation for the
single droplet potential welhg,op(X),

2 ONol 7dronl

2 oL //drop.
— a——=0. (31
g% Mdrop 57/drop

The variational derivativeS\y/87 can be calculated from

the variational principle for the lowest eigenvalue of the qua-

dratic contribution taH,[ ¢], Eq. (20),

Nol 77]=minJ dx[(7— ) y+a%(Vye)?l. (32
Yo

x()=x(0)| 1— (40)

x(0)—1 e

6
Equations(36) and (39) show that the characteristic dimen-
sion of the droplet is=1. Reinstating dimensional units, the
droplet size is expressed through the parametas

R(\) = (41)

a
Jrx

Substituting Eq(36) into the normalization condition, Eq.
(23), we find the Lagrange multiplier

Taking the functional derivative of both sides of this equa-

tion with respect top(x) gives

ONol 7]

57(%) 33

= —Y5(x).

a=81l,a%\r— )\/gg. (42
Evaluating the functional 7] at 7= 7y yields
S(\)= izf dxngop=——5a%la(r—=N)*2 (49
393 O3

where integrald,, are defined by
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FIG. 2. Line a describesyy(t)=x(t) and lineb gives y,(t). FIG. 3. Amplitude of droplet as a function of mean volume
Line c in the inset shows the functio@(m) while line d corre-  fraction, for =0.5 andr=0.
sponds toC(0)=_C.
The free energy is calculated by steepest descent estimate
® of the integral, Eq(29). In this approximation, the free en-
ln=f xo(t)t?dt. (44 ergy of the droplet iAF41op(A*) = Egrop(A*) +KeTS(A*)
0 wherex* minimizes the expression

Numerical integration yields

AF grop(N) 6 —)\) \2ad
¥(0)=4.19, 1,=1.73, 1;=3.46, and 1,~8.82. kT =N ()32,
(45
, : 87 312
Steepest descent evaluation of the density of states Eq. +—a’la(7—\)7% (48)
(30), using the definition of the average E(@L7), yields 303

g(\)xexg —S(\)]. The calculation of the preexponential Since a minimum exists only for
factor in this expression is nontrivial and requires the con- y

sideration of the excited states, with eigenvalues larger than 2
the ground statel g<0. Taking into account the contribu- < 7-D=o,14&, (49)
tions of the Goldstone modéwith A =0) one obtaingAp- 94
pendix A 7p can be interpreted as the stability limit of the droplet
D S\ phase. _ _ _
g(\)= e SN, (46) Our steepest descent evaluation of E29) is valid for
=N R3(\) |AFgrop(N*)[>kgT. Since g3, gs~1N, we have
|AF grop(N*)|/kg T~ JN and this condition is nearly always
whereD is a normalization constant. satisfied for sufficiently high degrees of polymerizati@x-

We now return to the expressi_on_for the energy of a dropcept in the immediate vicinity of the critical pojniThe pres-
let, Eq. (25). Substituting the variational ground state solu-ence of a deep minimum of the free energy suggests that

tion ¢(x), Eq. (36), we find long-lived droplets with composition ¢=¢
E () a2 2 +2a%%\ ¢(1— ¢) 4, appear following a quench to< 7y .
droplA)  bma C, C= 2.034. (47) Notice that such long-lived droplets are quite different from
kgT ga(7—N)%2 L4 critical droplets that lead to the decay of the homogeneous

metastable phase when the system is quenched inside the

Since the true ground state energy is always lower thaibinodal (between the binodal and the spingdial classical
the variational estimate, the above procedure overestimateéseories of nucleation and growfd]. These critical nuclei
the energyEq,op(N). As shown in Appendix B, minimization are unstable, have an interface that is much thinner than their
of the exact energy functional, EQO), yields an expression radius, and their bulk composition coincides with that of the
for the energy that can be written in the form of E47), final equilibrium phasg12]. In contrast, our droplets are
provided that we replace the constaDtby the function locally stable, with an interface that is of the order of the size
C(m) of the parametem= —\/(7—\). A plot of C(m) vs  of the droplet, and concentration at their center that deviates

m is shown as curve in the inset of Fig. 2. by an amount
The horizontal lined in this inset shows the value & -
=C(0) obtained by the variational approach, E47). In |64(0)|=2a%\ p(1— )| 4(0)]
agreement with the inequalit)Edrop(}\)éEgrop()\), the |
curveC(m) always lies above this line and coincides with it _ a3V (11— d) va(0)<1 50
atm=0 (A=0). In the opposite limitm=1 (|]\|> 7, in the 03 HL=Pxo(0<L, 50

vicinity of the spinoda), the functiony(r) is calculated nu- o
merically[see Eq(B1) of Appendix B and curvé in Fig. 2.  from the meang (see Fig. 3. Consequently the droplet so-
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30
3
400
< 20
& 3
2001 =
00 &
2
1
o] o :
—— 2 0.4 05, 08 0.7

T
R/(aN"?)
o ) . FIG. 5. Radius of droplet as a function of mean volume fraction,
FIG. 4. Distribution function of the droplet radii for=rp for 6=0.5 andr=0.

(curve 1, 0<71<7p (curve 2, and 7=0 (curve 3. The value of
Rmax for each of the curves is shown by a circle. droplet contributions, Eq(B1), with parameters treated as
_ - . o variational coefficients that minimize the free energy of the
lution for ¢ satisfies the condition of applicability of the jneracting many-droplet system. In order to understand how
Landau expansion, E¢8). _ , droplets will be distributed in space, one has to determine
In order to get further insight into the physical meaning of iy jnteraction. Consider two droplets and assume for sim-
our drpplet solution, we take note of the fact that the '_”te'plicity that both have the most probable sR& correspond-
grand in Eq.(29) can be interpreted as the Boltzmann weight;,; 15 ground state eigenvalug . The droplets are centered
of droplets corresponding to a givan The one-to-one rela- 51,4t nointsx, and x,, respectively, such that the distance
tion between the eigenvalue and the radius of the droplet .veen them{x,—x,| is large with respect to R*. The

R, EQ. (41),’ a”,OWS us to \{vrite the Boltzma_nn weight of field (x) that describes this configuration can be written as
droplets with sizes in the intervaR(R+dR) in the form

p(R)(V/IR®)dR/R, whereV is the volume of the system and P(X) = Yarop(X—X1) + Yrop(X—Xz). (52)
the dimensionless distribution function of droplets of dize
is defined by Substituting this expression into EQ0), we find the energy
of the two-droplet configuration,
_ 2 Edrop[)\(R)]
p(RI=2DSINR)Jexp —SIMR) === 7 E=2EqropT Eint(X1—X2), (53
(51

where the main contribution to the interaction energy for
In the range & 7<rp this distribution is sharply peaked well-separated droplefshe contributions that contain linear
aboutR* =R(\*), with R extending up to a cutofR,, that  terms inggop(X1—X) OF ¢gr0p(X,—X) vanish because these
corresponds to the maximal value|af| for which a droplet ~ functions minimize the energy functional, EQ0)] is
solution existsh .= 0 (see Fig. 4. Since the amplitude of the .

round state solutiorty vanishes in the limitA,=0, the _ 94 2 2

ground state dominance approximation that leads to(ZA). Bin(X1=%2) = ZJ AXWtirop(X1~X) Yarop(X2 = X)-
breaks down. Atr= 7 the values oR* and R, coincide (54
and aboverp the distribution is monotonically increasing

with R. R, increases monotonically with and diverges as When the distance between neighboring dropléts,
0. —X,|, is large with respect to their characteristic sR&

Notice that once a droplet of radil is formed, it can =& 7—A*, we can use the asymptotic form of the function
only decay if, in the process of thermal fluctuations, it%drop(X), EQs.(B1) and(B5). Calculating the integral in Eq.
reaches the critical sizB,. Since the decay time is pro- (54 we find

portional to the ratiop(R*)/p(Rmad, inspection of Fig. 4

shows that it increases dramatically as the spinodal is apg (X1—%,) = In*)%a®  ma B 2\/7'|X1_X2|)
proached. N _ o _ MO T g (r= A2 (X X a '
Away from the critical point, the characteristic dimension (55)

of a droplet is of ordea/N and it diverges akp— ¢¢| ~* as

the critical composition is approachésee Fig. 5. Since the above expression is positive definite we conclude

that droplets always repel each other and that the Coulomb-
like |x;—x,| ~* interaction is screened on a distance of order
of the correlation lengtf=a/+/7, Eq. (B6).

The many-droplet problem is prohibitively difficult and ~ When the blend is quenched into the region ry (indi-
its exact solution is beyond the scope of this wéitr an  cated by the arrow in Fig.)lin which the free energy well
attempt to study the global equilibrium problem, see Refcorresponding to an isolated droplet is much deeper than
[13]). In the following, we will assume that the general so-kgT, we expect that droplets will appear spontaneously in the
lution ¢(x) can be written as a superposition of many single-entire volume of the sample. This process will continue until

IV. LATTICE OF DROPLETS
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Since the droplet phase disappears-at, , we will con-
sider sufficiently deep quenches to the vicinity of the spin-
odal, for whichr< 75 . Assuming thatr,,,<|\| we find that
\ coincides with the ground state eigenvalueof the single
droplet solution. Minimizing Eq(58) with respect tor,,

and| we get
C2(1) a
Toar=——|\*|=0.19\*%|, |= In(3z7?).
=g N I=02dM], 1= Zein(

(59

FIG. 6. Schematic contour plot of a two-dimensional cut This confirms the self-consistency of the assumptibns
through the lattice of droplets, in the vicinity of the spinoddle > R*=a|\*| Y2 and r,,,<|\*| used in the derivation of
coutours describe lines of equal volume fractioh Eq. (59).

the free energy reduction due to droplet formation is bal- V. DISCUSSION
anced by interdroplet repulsion. The presence of sti(ting
interaction between the droplets at separations of the order of Our analysis shows that a new type of metastable state
their dimensions is much larger thaksT) long range can form when a homogeneous polymer blend undergoes an
Coulomb-like repulsion resembles the interaction betwee®ff-critical quench to the vicinity of the mean field spinodal.
highly charged colloids and raises the possibility that thel his state consists of spherical droplets each of which corre-
droplets form a Wigner crystal with lattice spacing muchsponds to a deep local minimutof order NkgT) of the
larger than their size. The analogy is incomplete since in oufree energy, compared to the initial homogeneous phase. The
case both the number of droplets and their shape can p@dius of the droplets diverges and the deviation from the
adjusted in order to reduce the repulsion and minimize thénean concentration vanishes with the approach to the critical
free energy. In the following, we shall not consider the deli-point. Away from the critical point, a finite concentration
cate questions of long range order and symmetry of the drogsontrast between the droplet and the background develops,
let lattice, and will characterize it by an effective coordina-and its radius decreases and approaches polymer dimensions.
tion number z and a characteristic distande between We find that the interaction between droplets is purely repul-
neighboring dropletésee Fig. 6. sive, of a screened Coulomb type, and conclude that close to
In order to account for effect of interdroplet repulsions onthe spinodal such droplets will form spontaneously every-
the shape of individual droplets, we use Feynman’s variawhere inside the volume of the blend. Although detailed con-
tional principleAF<AF,,,, whereAF andAF,,, are the siderations regarding the possibility of long range order in
true and the variational free energies of the droplet latticethe resulting droplet “lattice” are beyond the scope of this
respectively. The latter is calculated using a trial fieldwork, the analogy with Wigner crystals suggests the presence
,ar(X), chosen as a superposition of many single droplepf at least short range liquidlike order. Even though the lat-
contributions, Eq.(B1), with coordinates of the center of tice of droplets has a higher free energy than that of the two
mass{x;} corresponding t& lattice points, coexisting homogeneous phases of different polymer concen-
trations, the height of the free energy barrier for the dissolu-
K tion of a droplet diverges agNkgT in the limit of high
%ar(x):E Darop(X—X;). (56) molecular weight, suggesting that the droplet phase may be
=1 practically stable on experimentally accessible time scales.
Apart from its fundamental importance, the existence of such
a long-lived droplet phase may have interesting practical ap-
plications in polymer composites technology since it implies
that one can, by an appropriate choice of parameters, limit
the segregation of the components of the blend to length
scales in the range of hundreds of angstroms while keeping
JE the mixture of two high molecular weight polymers macro-
_ _ drop ey scopically homogeneous.
Holoar] =K| Barop® (7= 7oar) ITyar +;j Bind(Xi =), A schematic phase diagram of a polymer blend based on
(570  the above considerations is presented in Fig. 7. Notice that
even though droplet solutions have no peculiarities at the
where Eg,,, is the energy of single droplet configuration spinodal, strictly speaking, our thermodynamic consider-
given in Eq.(B8), with the substitutionr— 7,,,. The values ations break down somewhere beyond the limit of stability of
of | and,,, are found from the condition that they minimize the homogeneous phase, and one must go beyond the Landau

The functionyrg, () is determined by Eq56) in which the
experimentally measurable parameteris replaced by a
variational parameter,,, . Substituting Eq(56) into the ef-
fective Hamiltonian, Eq(20), we find the energy of a lattice
of droplets,

the variational lattice free energy expansion, Eq.8), and consider the complete nonlinear
problem.
AF,ar=H [ ¢,a ]+ KgTKS(N). (58 We would like to stress that even though our prediction of
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] : ; lations suggest that the Ginzburg number in blends is unex-
1 . ; pectedly large for values o commonly used in experi-
: : ments[16].

A possible criticism of our analysis is that the de Gennes—
Flory—Huggins free energy, Eql), does not provide a sat-
isfactory description of the blend on length scales of the
order of polymer dimensions and that a more refined theory
(see, e.g., Ref$17] and[18]) is needed. While this is strictly
true, the derivation of the droplet solution is based only on
' T T ' the GL Hamiltonian, Eq(8), which is the generic phenom-

) ’ ) ) enological functional for the description of first order phase

FIG. 7. Schematic phase diagram. In the CN region betweedransitions. The only polymer-specific characteristic is the
lines 1 (binoda) and 3, the initial homogeneous phase decayssmall magnitude of the Ginzburg number or, equivalently,
through the formation of critical nuclei. The LD region correspondsthe anomalously small amplitude of thermal fluctuations in
to the metastable lattice of droplets and extends from line 3 tdhe vicinity of the spinodal. This guarantees the validity of
somewhere above the broken lindspinodal. Spinodal decompo- mean field arguments that allow the replacement of the term
sition (SD) takes place in the region limited by line 4. The domain cubic in ¢ in the original GL Hamiltonian by a random field
between the LD and SD regionguestion mark is outside the that acts as an attractive potential that leads to the appearance
scope of the present work. of localized droplet solutions. We would like to caution that
while the derivation of the single droplet solution is robust,

a metastable droplet lattice appears to be supported by ligfig€ validity of the tentative analysis of the lattice of droplets
scattering and microscopy observations of arrested dropld® Sec. IV is open to question and further analytical and
growth in Refs[2] and[3], these experiments report obser- numerical stud!es of this collec_tlve state are clearly neces-
vations of domains of size exceeding@ that form during ~ S&ry- If our conjectures concerning Fhe Iattlg:e_ (_)f droplets are
the late stages of phase separation, and are unrelated to diréct, metastable droplet phases in the vicinity of the spin-
droplets whose sizes and separations are smaller by thr@al are expected in other physical systems described by the
orders of magnitudéof the order of polymer sizeThe latter ~Hamiltonian Eq.(8) an characterized by a small Ginzburg
can be observed by neutron and x-ray scattering on polymdtimber, such asHe—*He mixtures[19], and magnetic ma-
blends in which one of the polymeric components is labeled(€rials in which there are competing antiferromagnetic and
To the best of our knowledge, the only published neutrorf€fomagnetic interaction20].

scattering study of off-critical quenches into metastable and
unstable regions of the phase diagram was done on a ternary
blend of two model polyolefingone of the components was
deuteratefland a copolymef14], to which our theory is not Helpful discussions with B. Shapiro and S. Reich and
directly applicable. Although several peaks with amplitudewritten correspondence with N. Balsara and T. Hashimoto
decreasing with increasing wave vectors were observed byre gratefully acknowledged. Y.R. would like to acknowl-
small-angle neutron scatterifi§ANS) for quenches into the edge the support by a grant from the Israel Science Founda-
metastable regiofisee Fig. 1b) in Ref. [14]], the corre- tjon.

sponding wavelengths were an order of magnitude larger

than polymer dimensions. In a recent unpublished SANS

study on a binary blend, a peak in the scattering developedAPPENDIX A: GOLDSTONE MODES OF THE DROPLET

rapidly following a pressure quench to the vicinity of the

spinodal [15] (no scattering peaks were observed for : ; .
. X ; . tate physics developed in the context of electron localiza-
guenches into the metastable region outside the spinodal. ~ ) ) X , .

tion in a random field, we first derive a field-theoretical rep-

YVhlIe th'e repo'rt.ed"observathn that the _Iength scale of th?esentation for the density of stateg(\)=(d[\
nucleating entities” does not increase with the approach to_)\ (M), Eq. (30

the spinodal, is inconsistent with classical theories of nucle- V?/ ”b 7’ qt'h th : lit

ation and spinodal decomposition, it agrees with our predic- € begin wi € equality
tions. However, since the smallest length scale reported in
this SANS study (400 A) exceeds the radii of gyration of
the polymers (160 A), a detailed comparison with our AIN=No(m)]=—
theory requires extending the experiment to larger scattering

wave vectors or increasing the molecular weight of the com-

ponents of the mixture. The latter alternative has the advanwhereiO denotes linie ase approaches zero from above,
tage that since the Ginzburg number decreases with increaand represent the two-point correlator of the figlk) as

ing N, the validity of our mean field approximations

improves with increasing degree of polymerization. Working

with very high molecular weights may in fact be necessary (¥(xy) w(x2>>=2 ‘/’k(xl)‘/’k(x?) _ (A2)
for observing the predicted behavior, since numerical simu- K A= N(m)+i0
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The average in the above expression is taken with the weight NN |
exp(—H@[y1/kgT), where the quadratic contribution to the SHO y]= EJ dxiZ OYiM;; 8¢ . (A9)
HamiltonianH,[ #], Eq. (20), is given by .

HLy]
kT :f

o n—i0 2 The operatoM of this quadratic form can be decomposed
%1//24— %(V »)?|. (a3) into transverse and longitudinal parts,

Mij:MLeiej+MT(5ij_eiej), (AlO)

Since we are interested in a situation when the ground state
dominance approximation is valid, we only keep te0 ML=7—\—a2V2—gathinadT),
contribution in Eq.(A2). Taking into account the normaliza-
tion condition, Eq.(23), we find from Eqs(Al) and(A2), 1
1 MT=7r—\—a’V?- Egs'pinst(r)-
5[)\—)\0(17)]2——J dx Im Gy(x,x), (A4)

m Introducing the orthonormal set of eigenfunctions of the op-
eratorsM; andM+
Go(y,X;) = lim f D gy (xy) Y (xp)e M 1,

n—0 MEg=Aiv,  MTye=Niug, (A11)
where integration goes overn-component field ¢  we expandsy(x) over these normal modes,

={yt, ... ¢"}. Substituting this expression into E(B0) R o

and integrating over the auxiliary fielg(x), using Eq.(17), S(x) =yt (x)e+ T (x), (A12)
we find

L(x)= L iT(x)= 2T
Q(R)Z—%f dxIm G(x,X), (A5) (%) ; Crip (%), i (X) 2| ; Cr i (X),

i where then—1 vectorsEL (I=1,...n—1) for eachk are
G(x,x)= lim J Dyt i (x)e "W (A6)  orthogonal to each other and to the veator
n—0 Consider first the Goldstone modes that correspond to ei-
) o i i , genvalues\ = 0. Our heuristic derivation below follows that
where the effective Hamiltoniatup to cubic order iny) is ot Ref. [22]. The variation of the field induced by the trans-
given by lation of an instanton in regular three-dimensional space by a
distancedxg is

H<3>[<Z]:f dx

T—A—i0. a’ _. -
i S (V= 2 A%
2 2 6 - - > &‘Z’inst(x)

(A7) OPY(X) = Pinst( X+ X0) = Pinst(X) = EI o X
I

Even though we are interested in the density of states asso- (A13)
ciated with the minimal eigenvalug, of Eq. (22), our result, _ o - 5
Eq. (A5), is more general and gives the contribution of all Imposing the standard normalization conditiofdxyi(x)
the excited modes of the droplédeviations from spherical =1, yields
shapg.

It is easy to check that the steepest descent evaluation of lﬁLl(X):J_l/gad/inst(x) 3 :f dx Ihinsi(T)
the integral, Eq.(A5), gives g(\)=e S where S(\) 1 L ox 't X
=min H®[ ] is given in Eq.(43) and thatH®[ ] is mini- (A14)

mized by the instanton configuration of the fie]d Comparing Eqs(A12) and (A13), we find

0i -

2

> N T—N\ rv7—NA\ 1/2
instX) = Yinsd(1)€,  Yins(r) = O3 XO( a dCli:‘]L dxo, (A15)
(A8) for each one of three translational modes. Since the eigen-

- ) ) o ) _ _ value \;=0 of the Schrdinger equation, Eq(A11) for
Heree is an arbitrary unit vector in-dimensional “isotopic” z,/;&(x) is degeneratdthere are three eigenfunctions corre-
space. ) sponding to this eigenvaliewe conclude that it does not

In order to calculate the preexponential factor we need Q. respond to the nondegenerate ground state and that the
take into account contributions from excited sta_ltes, W|th €iatter should have a negative eigenvaIN§,<0. In the lan-
genvalues larger than,. We expand the effe;ctwe I:|am||- guage of atomic physics, translational Goldstone modes cor-
tonian about the instanton configuratiody(x)=#(X)  respond to triply degenerat@ipolan p states, while the
— thins(1) [21], ground state is a spherically symmetsistate.
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Now consider rotational modes, which correspond to aVinimizing the Hamiltonian, Eq(20), with respect toy(r)

rotation of unit vectore (in the n-dimensional “isotopic”
spacg by an arbitrary vectope, orthogonal to the vectas,

se'.e=0. (A16)

This rotation is determined by the- 1 independent angles,
[=1,... n—1. The variation of the field induced by an in-

finitesimal rotatione— e+ o¢', is

SP(X) =2 Yinsi(1) 8€'= 2 IF2ug(x) 8€!, (A7)
| |
where the rotational eigenfunction is
HO=35ngx), 3= [ eyl (A18)
Comparing Egs(A12) and(A17), we find

dch=J¥2s¢€' (A19)

for each one oh—1 rotational modes, which correspond to

yields the equation

m=—N\/(7—N\),
(B2)

Xt 22X t=(1=m=x) xm+mx3,,

with boundary conditions
Xm(0)=0, xp(t—)=0. (B3)
Comparing Egs.(B2) and (37) we conclude thaty(t)

=x(1).
At small t the solution of Eq(B2) can be expanded as

X(0)—1+m-my(0) ,

Xen(t) = xin(0)| 1= 5 +e,
(B4)

while for t—oo it decays as
Xm(t)=t"te T (B5)

n—1 independent angles that characterize the orientation of We conclude that in contrast to the variational solution,

the vectore.
Calculating the Gaussian integrals overalin Eq. (A6),
we find the instanton contribution to the functi@{x;,x,),

G(X1,X%2)
- 1/2 - (n—1)/2
— lim e~ SN 33123(n-1)/2 o o
n—0 LT kl;ll )\k kl;lo )\I

% [ o [ Q8pins0aK insiO0x) (A20)
Since)\g<0, this contribution is imaginary. Using EGA8)
we can easily estimate the Jacobians,

Jr=S(M)/(7—N\).

J =S(\)/a?, (A21)

Expression(A20) can be further simplified by means of di-

mensionless analysis if we notice thet and \; are both
proportional tor—\. Substituting Eq(A20) into Eq. (A5)
and taking the limin—0, we arrive at Eq(46).

APPENDIX B: NUMERICAL MINIMIZATION
OF THE ENERGY

In the following we carry out numerical minimization of
the energy functional, Eq20). Since the ground state solu-
tion is spherically symmetric and therefore depends on the
radial coordinate only, it is convenient to express it through
a dimensionless functiog,(t) of the dimensionless length

t=ry7—N\/a,

\/—6)\
wdrop(r): g_4Xm

r\/T—)\
a

(B1)

Eq. (21), the functionyy,,,(r) has two characteristic scales,

R=a/\Jr—\ and é&=al\r.

In general, forA<0 we haveR<¢, and the two lengths
coincide only in the case of a critical droplat=0. Accord-
ing to our analysisR determines the characteristic size of the
potential well[see Eq(41)], while £ is the correlation radius
of the system, which diverges at spinodal. Inspection of Eq.
(B2) shows that it can be simplified in two limiting cases.
For A=0 (i.e., m=0) this equation reduces to E@7) and

its solution coincides with the variational ong,(t) [curvea

in Fig. 2]. In the limit of small7(<|\|) that corresponds to
m—1, numerical calculations show that the solution factor-
izes into a product of functions & and of &,

[— 6\ r
d/drop(r): ?Xl R

where the solutiony4(t) of Eq. (B2) with m=1 decays as a
power, y;(t)~t~! ast— (see curved in Fig. 2).

Substituting the numerical solution fog,,p(r) into
Hamiltonian Eq.(20), we find

(B6)

1+r
3

Cs (B7)

Edrop()\) —
kgT

6mai\? (—x)
ga(r—N)%2 L TN)

cim = [ “atexi, ®9)

which has the same form as that of the variational energy,
Eq. (47), with C=C(m=0) replaced byC(m).
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