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Metastable lattice of droplets in phase separating polymer blends

Sergey Panyukov and Yitzhak Rabin
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 7 February 2002; published 21 June 2002!

Phase separation in a polymer mixture with an off-critical composition is described by a Ginzburg-Landau
Hamiltonian that contains both cubic and quartic terms in the deviation of composition from its mean value in
the homogeneous phase. Our analysis suggests that when a blend is brought in the vicinity of the spinodal, the
initial homogeneous phase becomes unstable against the formation of a metastable lattice of spherical droplets
whose lifetime diverges in the limit of infinite molecular weight. The composition of the droplets approaches
that of the background phase and their size diverges with the approach to the critical point, but the composition
contrast is enhanced and droplet radii become comparable to polymer dimensions, away from criticality. The
connection between our predictions and the results of recent neutron scattering experiments is discussed, and
new experiments that could probe the proposed droplet lattice are proposed.
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I. INTRODUCTION

The study of phase separation in polymer blends is imp
tant for elucidating the fundamental limitations on the pra
tically important task of mixing different polymers in orde
to obtain composites with tunable material properties. I
usually thought that the physical mechanisms governing
compatibility and segregation in polymer blends are qu
similar to those in mixtures of small molecules and that
differences between the two cases are mainly quantita
and can be summarized as follows.

~1! Because high molecular weight reduces the entrop
mixing, the region of the phase diagram in which two po
mers can be mixed in all proportions is strongly reduc
compared to that of their monomeric counterparts.

~2! Since each polymer is permeated by many others,
fluctuations of relative concentration of the two compone
in the mixture are suppressed and mean field approximat
have a much larger domain of applicability than in mixtur
of small molecules@1#.

An indication that something peculiar takes place in po
mer blends came from light scattering studies of phase s
ration following a temperature quench at an off-critical co
position @2,3#. Initially, the peak of the scattered intensi
moved with time to progressively longer wavelengths, exh
iting the coarsening of the demixing pattern characteristic
spinodal decomposition@4#. However, at later times it be
came pinned at some wavelength whose value depende
the location of the quench and on the molecular weight of
constituents, and no further change with time was obser
@2#. Direct visualization by computer-enhanced microsco
showed an arrested pattern that consisted of nearly sphe
droplets of roughly equal size@3# ~in this particular experi-
ment, the droplets eventually coalesced and phase separ
continued following a long incubation period!. Attempts to
explain the observed pinning invoked slowing down of po
mer diffusion due to entropic barrier created for the transp
of long chains across sharp interfaces between ph
separated domains@5#, and preferential interaction of th
bounding surfaces with one of the components in a qu
1063-651X/2002/65~6!/061803~12!/$20.00 65 0618
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two-dimensional polymer film@6#.
Motivated by these observations, in this paper we re

amine the nature of metastability in polymer blends. O
analysis shows that when a blend with an off-critical comp
sition is quenched into the vicinity of the spinodal, the cla
sical nucleation scenario breaks down and the initial hom
geneous phase becomes unstable with respect to
formation of droplets with size comparable to polymer d
mensions, and with composition that differs from that of t
equilibrium daughter phase. In Sec. II we introduce the st
dard de Gennes–Flory–Huggins free energy of an asymm
ric polymer blend, which accounts for entropy of mixin
interaction, and entropic elasticity of polymer chains@7#, and
upon some transformations derive the Ginzburg-Land
~GL! Hamiltonian that describes the energy cost of dev
tions from the homogeneous state. We analyze the ther
dynamics of phase separation, review the main results of
classical theory of nucleation for shallow quenches into
metastable region in vicinity of the binodal, and discuss
anticipated breakdown of this theory for deeper quenches
Sec. III we show that the cubic term in the GL Hamiltonia
can be replaced by a position-dependent fluctuating temp
ture field and rewrite the free energy of the blend in a fo
familiar from the theory of superconductivity in a rando
field. This random field acts as an effective potential w
that leads to the appearance of a localized spherical dro
solutions. The single droplet free energy is expressed as
sum of droplet energy and density of states contributio
~logarithmic corrections due to Goldstone modes are deri
in Appendix A!. Using the ground state dominance appro
mation we derive an explicit solution for the droplet profi
and its energy~an exact solution obtained by numerical min
mization of the energy functional is presented in Appen
B!. We show that in the vicinity of the spinodal, the distr
bution function of isolated droplets has a sharp peak a
well-defined droplet radius that is bounded below by t
polymer radius of gyration and diverges as the critical co
position is approached. Since the depth of the correspon
minimum of the free energy diverges with the square root
the degree of polymerization, we conclude that~a! droplet
©2002 The American Physical Society03-1
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solutions correspond to long-lived metastable states of
blend, and that~b! droplets will appear spontaneously ever
where in the system upon quench into the vicinity of t
spinodal. In order to gain insight about the many-drop
solution, in Sec. IV we analyze the interaction between t
isolated droplets. At large separations, the interaction is
repulsive Yukawa type, with screening radius given by
correlation length, and thus droplets are expected to fo
until the free energy gain due to their self-energy is balan
by interdroplet repulsions. Variational minimization of th
many-droplet free energy shows that the ‘‘lattice of drople
picture is self-consistent in the sense that the interdro
spacing is much larger than their radius and that the inte
tion between droplets has only a minor effect on their int
nal concentration profile~at least in the vicinity of the spin
odal!. Finally, in Sec. V we summarize the main results
this work and discuss the limitations of our approach. T
connection between our results and available neutron sca
ing data is discussed and new experiments that could tes
ideas are proposed.

II. PHASE SEPARATION: THERMODYNAMICS
AND NUCLEATION

Consider a two-component polymer blend whereN and
uN are the respective numbers of statistical segments
chain (u is the asymmetry parameter;u51 for a symmetric
blend! anda is a microscopic length scale, of the order of t
statistical segment length~for simplicity, we use a single
length scale to represent both the Kuhn length and the siz
the lattice site!. The effective ‘‘Hamiltonian’’ of the blend is
the de Gennes–Flory–Huggins free energy that can be w
ten as a functional of the volume fractions of the two co
ponentsf15f andf2512f, respectively@7#,

H

kBT
5E dx

a3 Fa2

8

~,f!2

f~12f!
1U~f!2mfG , ~1!

wherekB is the Boltzmann constant andT is the temperature
and the integration extends over the volume of the ble
The potentialU(f) is given by the Flory-Huggins expres
sion for the free energy per site@8#

U~f!5
f

N
ln f1

12f

uN
ln~12f!1xf~12f!, ~2!

where the Flory interaction parameterx(T) is, in general, a
function of the temperatureT. The chemical potential o
component 1, is defined bym5dU/dfuf5f̄ , and thus,

m5
1

N
ln f̄1

1

N
2

1

uN
ln~12f̄ !2

1

uN
22xf̄1x, ~3!

where f̄ is the mean volume fraction of component 1. I
spection of Eq.~2! shows that, forx,0, the entropy of mix-
ing dominates over the effective repulsive interaction
tween the two components and they are miscible in
proportions. For positive and sufficiently large values ofx,
repulsion dominates and demixing of the two compone
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takes place in equilibrium. The coexistence line~binodal! in
thex-f plane that describes the volume fractions of comp
nent 1 in the two coexisting phases in equilibrium is fou
by minimizing the function

Nx~f,f8!5
1

f2f8
S 12

1

u D1
1

~f2f8!2

3 S f8ln
f8

f
1

12f8

u
ln

12f8

12f D ~4!

with respect tof8. The value of the Flory parameter at th
binodal,xbin5x@f̄,fmin8 (f̄)#, is obtained by substituting the
resultingfmin8 ~the volume fraction in the phase that coexis

with a phase of volume fractionf5f̄) back into Eq.~4! ~see
Fig. 1!.

In order to transform the square gradient term in Eq.~1!
into the standard GL expression, we substitutef5sin2w,
where 0,w,p/2 and get

H

kBT
5E dx

a3 Fa2

2
~,w!21U~sin2w!2m sin2wG . ~5!

Expandingw about its mean value,

w5arcsinAf̄1a3/2c ~6!

we can write the Hamiltonian asH5H0(f̄)1DH@c# where

H0~f̄ !

kBT
5

V

a3
@U~f̄ !2mf̄#, ~7!

with V the volume of the blend. The HamiltonianDH that
describes the deviations from the homogeneous solution
the GL form

DH@c#

kBT
5E dxFa2

2
~¹c!21

t

2
c22

g3

6
c31

g4

24
c4G . ~8!

The coefficients of the expansion~to fourth order inc) in the
above expression are

FIG. 1. Phase diagram foru50.5, f̄50.5. The binodal~1! and
spinodal~2! lines are shown. The arrow indicates the position
the phase diagram into which the system is quenched.
3-2
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t5
4

N
@12f̄1uf̄22xNf̄~12f̄ !#,

g35
8a3/2

NAf̄~12f̄ !
@~12f̄ !22uf̄2#, ~9!

g45
16a3

Nf̄~12f̄ !
@~12f̄ !2~4f̄21!1uf̄2~324f̄ !#.

The above expansion is valid forg4.0. For u50.5 this
condition holds in the range 0.23,f̄,0.81.

The mean field spinodal~the boundary of stability of the
spatially homogeneous state of the blend! is defined by the
conditiont50, or equivalently by

xspN5
1

2f̄
1

u

2~12f̄ !
. ~10!

The binodal and the spinodal coincide at the critical po
defined byg350 ~Fig. 1!. This yields the critical volume
fraction

f̄c5
1

11Au
. ~11!

Consistent with the fact that the Landau expansion ho
only in the vicinity of the critical point, we substitutedx
5xsp in the expressions for the coefficientsg3 and g4 that
will be treated as temperature-independent parameters in
following @the remaining temperature dependence is due
the fact thatt is a function ofx(T), Eq. ~9!#. In general,
fluctuations shift the spinodal of the spatially homogene
system to some finitet.tG where the Ginzburg numbertG
defines the boundary of applicability of the mean field the
~the Ginzburg region!. However, it can be shown@7,9# that
tG→0 in the limit N→` and therefore, in polymer system
the mean field approximation is expected to yield accur
results even in the vicinity of the spinodal.

The fluctuational contribution to the total free energy
the blend is given by

DF52kBT ln E Dc expS 2
DH@c#

kBT D . ~12!

Inspection of Eq.~6! shows that the fieldc is related to the
deviation of the volume fraction of component 1 from
mean value,

df52a3/2Af̄~12f̄ !c. ~13!

In addition to small fluctuations about the homogeneo
state in the one-phase region of the phase diagram, the
Hamiltonian governs the kinetics of phase separation and
formation of macroscopic density inhomogeneities followi
a quench into the two-phase region,x.xbin . According to
the common view, segregation takes place via nucleation
growth or via spinodal decomposition, depending on whet
06180
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the system is quenched into a metastable or an unstabl
gion of the phase diagram. In the latter case, the initial
mogeneous phase decays via small amplitude, delocal
fluctuations whose amplitude and wavelength grow w
time until final phase separation is reached. For quenc
into the metastable region, the initially homogeneous s
decays by the formation of large amplitude, localized flu
tuations that correspond to a saddle point ofDH@c#, Eq. ~8!.
Near the binodalt5tb(f̄)5g3

2/(3g4), this saddle point
~critical nucleus! configuration of the fieldc is given by

ccn~r !5
c8

exp@~r 2Rc!/j#11
, ~14!

where r is the radial coordinate and we definedRc

5(atb
1/2/3)(tb2t)21, j5atb

21/2, andc852g3 /g4. Inspec-
tion of Eq. ~14! shows that this configuration describes
spherically symmetric nucleus with a large core of radiusRc
and nearly constant volume fractionf8 that coincides with
that of the new~daughter! phase, and a narrow interface o
width j in which this density changes to that of the moth
phase~in the vicinity of the binodal,Rc@j). Notice that this
solution corresponds to a saddle point of the GL Hamilton
in the sense that while nonspherical nuclei have a hig
energy than spherical ones, a nucleus of critical size has
highest energy among all spherical nuclei with radii eith
smaller or larger thanRc . In order to reach the thermody
namically favored macroscopic daughter phase, any sm
nucleus created in the process of thermal fluctuations fr
the initial homogeneous mother phase has to pass thro
the energy barrier associated with the critical configurat
~nuclei with R.Rc grow without limit!. This energy barrier
is given by,

DH@ccn#5
4p

81

g3
2

g4
2tb

1/2~12t/tb!2
;

uf̄2f̄cuN1/2

~12t/tb!2
. ~15!

Since the probability of formation~in the process of ther-
mal fluctuations! of the critical nucleus from the initial ho
mogeneous phase is proportional to exp$2DH@ccn#/kBT%, the
fact that the height of the barrier diverges at the bino
means that the initial homogeneous phase is metastable
der shallow quenches beyond the binodal, and that crit
nuclei will form on experimentally accessible time scal
only for sufficiently deep quenches. In low molecular weig
mixtures (N.1), one reaches the so called cloud point
which critical nuclei form and grow throughout the syste
immediately following the quench. This happens at so
finite value of 12t/tb , when the height of the barrier be
comes comparable tokBT, and at the same timeRc.j ~for
small molecules, away from the critical point, the correlati
length approaches their microscopic dimensiona), signaling
the breakdown of the critical nucleus solution, Eq.~14!. The
cloud point defines the experimentally observable limit
metastability and is often considered as an operational d
nition of the spinodal. This can be understood theoreticall
we notice that in mixtures of small molecules the Ginzbu
3-3
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 65 061803
number is large and the mean field spinodal is shifted c
siderably towards the metastable region.

A different situation arises in polymer blends in which t
correlation length is large even away from criticality,j
;aN1/2. In this case the critical nucleus scenario also bre
down at some finite value of 12t/tb , when the size of the
nucleus becomes of the order of its interfacial width (Rc
.j). Since, at this point the height of the energy barrier is
orderkBTN1/2@kBT, it does not represent the limit of meta
stability and the onset of spinodal decomposition is p
empted by the appearance of a new metastable phase. T
a consequence of the fact that since the Ginzburg num
vanishes in the limit of largeN, the mean field spinodal is no
shifted by fluctuations and therefore the phase diagram c
tains a finite region~somewhere in the vicinity of line 2 in
Fig. 1! in which critical nuclei are no longer formed but th
system is still stable against small amplitude, long wa
length fluctuations. This metastable phase corresponds
true local minimum ofDH@c# and consists of a lattice o
droplets of well defined size whose composition differs fro
that of the final equilibrium phase and varies continuou
with the distance from the center of the droplet.

III. SINGLE DROPLET SOLUTION

In the following we show that there is a range of para
eters in which the partition function of a system described
the Hamiltonian, Eq.~8!, is dominated by stable droplet con
figurations~instantons@10#!. In our analysis we will use the
analogy between our problem and superconductivity in
random field @11# where droplets of the superconductin
phase form in a sample with quenched spatial distribution
transition temperatures. Notice that both models reduce
the c4 theory of second order phase transitions if o
switches off the cubic~in c) term in our Hamiltonian and the
random field in Ref.@11#. In order to transform our theory to
the form of Ref.@11#, we get rid of the cubic term in the
Hamiltonian, Eq.~8!, by introducing an auxiliary field,h(x)
(h>0), through the functional integral,

K expS 1

2E dxhc2D L
h

.expFg3

6 E dxc3G , ~16!

where we defined the functional average of an arbitrary fu
tional A@h#,

^A&h5

E Dh exp~2S@h#!A@h#

E Dh exp~2S@h#!

, ~17!

with

S@h#5
2

3g3
2E dxh3~x!. ~18!
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The approximate equality, Eq.~16!, holds if the functional
integral is evaluated by steepest descent~this procedure is
valid for S@hmin#@1, wherehmin„x… is the function that mini-
mizesS@h#).

We now substitute Eq.~16! into Eqs. ~8! and ~12!, and
find

DF52kBT lnK E Dc expS 2
Hh@c#

kBT D L
h

, ~19!

where Hh@c# is the effective Hamiltonian of ac4-type
theory in an external fieldh,

Hh@c#

kBT
5E dxFt2h

2
c21

a2

2
~¹c!21

g4

24
c4G . ~20!

This completes our demonstration of the connection betw
our theory and that of superconductivity in a random fie
The analogy extends even further since in both problems
Ginzburg number is vanishingly small due to the existence
large intrinsic length scales~the polymer radiusaN1/2 in
blends and the correlation length of Cooper pairs in sup
conductivity!. However, even though the Hamiltonian in E
~20! is identical to that in Ref.@11#, the free energies differ
since in our case one carries out a thermal average of
partition function over the random fieldh, while in Ref.@11#
the random field is quenched and therefore one average
logarithm of the partition function. We show in the followin
that the typical configuration of the field2h(x) corresponds
to a spatial distribution of potential wells of sufficient dept
and that the fieldc(x) is localized in these potential wells
Consequently, the density field can be described as a co
tion of droplets.

Consider a single droplet configurationc(x) localized in
a potential well,2hdrop(x) around xÄ0. Following Ref.
@11# we assume that~a! one can treat the problem perturb
tively ~for smallg4) by expanding the solution in eigenfunc
tions of the linear problem defined by the quadratic part
the Hamiltonian, Eq.~20! and that~b! one can keep only the
ground state contribution to this expansion. This allows o
to write a variational solution in the form

c~x!5c0c0~x!, ~21!

wherec0(x) is an eigenfunction of the Schro¨dinger equation
that corresponds to the smallest eigenvaluel0 of the Schro¨-
dinger operatort2hdrop2a2¹2 ~the kernel of the quadratic
part of Hh@c#),

~t2hdrop2a2¹2!c05l0c0 . ~22!

As usual, the eigenfunction is normalized as

E dxc0
2~x!51. ~23!

Substitutingc5c0c0 into the Hamiltonian, Eq.~20!, and
minimizing the resulting expression with respect to the a
plitude c0 yields,
3-4
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c0
252

6l0

g4
S E dxc0

4D 21

. ~24!

Clearly, a solution exists only forl0,0. Inserting this ex-
pression into Eq.~20!, we obtain a variational estimate fo
the energy of a droplet

Edrop
0 ~l0!

kBT
52

3

2

l0
2

g4
S E dxc0

4D 21

. ~25!

The single droplet contribution to the partition functio
@the expression in the brackets in Eq.~19!# can be written as

E Dc expS 2
Hh@c#

kBT D.expF2
Edrop~l0!

kBT G , ~26!

where the energy of the droplet in a given energy wellhdrop
is

Edrop~l0!

kBT
5min

c

Hh@c#

kBT
. ~27!

Substituting Eq.~26! and the left-hand side of the equality

E dld~l2l0@h#!51 ~28!

into the integrand of Eq.~19!, we find the free energy of a
droplet,

DFdrop52kBT lnH E
2`

0

dlg~l!expF2
Edrop~l!

kBT G J ,

~29!

where the density of statesg(l) is defined as

g~l!5^d@l2l0~h!#&h . ~30!

We proceed to calculate the density of states by stee
descent evaluation of the functional integral that defines
above average@Eq. ~17!#. Minimizing S@h#, Eq. ~18!, and
taking into account the conditionl0(h)5l, by introducing a
Lagrange multipliera, we find the following equation for the
single droplet potential wellhdrop(x),

2

g3
2
hdrop

2 1a
dl0@hdrop#

dhdrop
50. ~31!

The variational derivativedl0 /dh can be calculated from
the variational principle for the lowest eigenvalue of the qu
dratic contribution toHh@c#, Eq. ~20!,

l0@h#5min
c0

E dx@~t2h!c0
21a2~¹c0!2#. ~32!

Taking the functional derivative of both sides of this equ
tion with respect toh(x) gives

dl0@h#

dh~x!
52c0

2~x!. ~33!
06180
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Substituting Eq.~33! into Eq. ~31! we arrive at the expres
sion

hdrop~x!5Aa/2g3c0~x! ~34!

Inserting Eq.~34! into Eq. ~22! with «05«, we find the
self-consistent equation for the functionc0(x),

~t2Aa/2g3c02a2¹2!c05lc0 . ~35!

Clearly, the eigenfunctionc0 corresponding to the lowes
eigenvalue is spherically symmetric and depends only on
radial coordinate,r. The Lagrange multipliera is found from
the normalization condition, Eq.~23!. It is convenient to in-
troduce the dimensionless distancet5rAt2l/a, and define
the dimensionless functionx(t) by

c0~r !5A2

a

t2l

g3
xS rAt2l

a D . ~36!

With these substitutions, Eq.~35! is recast into the dimen
sionless form,

x912x8/t5x2x2, ~37!

where prime denotes differentiation with respect tot. This
equation is solved subject to the boundary conditions

x~ t→`!50, x8~0!50, ~38!

where the first condition corresponds to a localized drop
state and the second one ensures thatx(0) is finite. The
above equation is solved by numerical integration of E
~37!. The asymptotic form of this solution att@1 is

x~ t !'t21e2t. ~39!

At small t!1 the solution is given by the series expansio

x~ t !5x~0!F12
x~0!21

6
t21•••G . ~40!

Equations~36! and ~39! show that the characteristic dimen
sion of the droplet ist.1. Reinstating dimensional units, th
droplet size is expressed through the parameterl as

R~l!5
a

At2l
. ~41!

Substituting Eq.~36! into the normalization condition, Eq
~23!, we find the Lagrange multiplier

a58pI 2a3At2l/g3
2 . ~42!

Evaluating the functionalS@h# at h5hdrop yields

S~l!5
2

3g3
2E dxhdrop

3 5
8p

3g3
2

a3I 3~t2l!3/2, ~43!

where integralsI n are defined by
3-5



E

al
on
ha
-

op
lu

ha
a

it

mate
-

let

s

that

m
ous

the

heir
he
e
ize
tes

-

e

SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 65 061803
I n5E
0

`

x0
n~ t !t2dt. ~44!

Numerical integration yields

x~0!.4.19, I 2.1.73, I 3.3.46, and I 4.8.82.
~45!

Steepest descent evaluation of the density of states
~30!, using the definition of the average Eq.~17!, yields
g(l)}exp@2S(l)#. The calculation of the preexponenti
factor in this expression is nontrivial and requires the c
sideration of the excited states, with eigenvalues larger t
the ground state,l0,0. Taking into account the contribu
tions of the Goldstone modes~with l50) one obtains~Ap-
pendix A!

g~l!.
D

t2l

S2~l!

R3~l!
e2S(l), ~46!

whereD is a normalization constant.
We now return to the expression for the energy of a dr

let, Eq. ~25!. Substituting the variational ground state so
tion c0(x), Eq. ~36!, we find

Edrop
0 ~l!

kBT
52

6pa3l2

g4~t2l!3/2
C, C5

I 2
2

I 4
.0.34. ~47!

Since the true ground state energy is always lower t
the variational estimate, the above procedure overestim
the energyEdrop(l). As shown in Appendix B, minimization
of the exact energy functional, Eq.~20!, yields an expression
for the energy that can be written in the form of Eq.~47!,
provided that we replace the constantC by the function
C(m) of the parameterm52l/(t2l). A plot of C(m) vs
m is shown as curvec in the inset of Fig. 2.

The horizontal lined in this inset shows the value ofC
5C(0) obtained by the variational approach, Eq.~47!. In
agreement with the inequalityEdrop(l)%Edrop

0 (l), the
curveC(m) always lies above this line and coincides with
at m50 (l50). In the opposite limit,m51 (ulu@t, in the
vicinity of the spinodal!, the functionc(r ) is calculated nu-
merically@see Eq.~B1! of Appendix B and curveb in Fig. 2#.

FIG. 2. Line a describesx0(t)5x(t) and line b gives x1(t).
Line c in the inset shows the functionC(m) while line d corre-
sponds toC(0)5C.
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The free energy is calculated by steepest descent esti
of the integral, Eq.~29!. In this approximation, the free en
ergy of the droplet isDFdrop(l* )5Edrop(l* )1kBTS(l* )
wherel* minimizes the expression

DFdrop~l!

kBT
526pCS 2l

t2l D l2a3

~t2l!3/2g4

1
8p

3g3
2

a3I 3~t2l!3/2. ~48!

Since a minimum exists only for

t,tD.0.145
g3

2

g4
, ~49!

tD can be interpreted as the stability limit of the drop
phase.

Our steepest descent evaluation of Eq.~29! is valid for
uDFdrop(l* )u@kBT. Since g3 , g4;1/N, we have
uDFdrop(l* )u/kBT;AN and this condition is nearly alway
satisfied for sufficiently high degrees of polymerization~ex-
cept in the immediate vicinity of the critical point!. The pres-
ence of a deep minimum of the free energy suggests
long-lived droplets with composition f.f̄

12a3/2Af̄(12f̄)c0 appear following a quench tot,tD .
Notice that such long-lived droplets are quite different fro
critical droplets that lead to the decay of the homogene
metastable phase when the system is quenched inside
binodal ~between the binodal and the spinodal! in classical
theories of nucleation and growth@4#. These critical nuclei
are unstable, have an interface that is much thinner than t
radius, and their bulk composition coincides with that of t
final equilibrium phase@12#. In contrast, our droplets ar
locally stable, with an interface that is of the order of the s
of the droplet, and concentration at their center that devia
by an amount

udf~0!u52a3/2Af̄~12f̄ !uc~0!u

5
ul* u
g3

a3/2Af̄~12f̄ !x0~0!!1, ~50!

from the meanf̄ ~see Fig. 3!. Consequently the droplet so

FIG. 3. Amplitude of droplet as a function of mean volum
fraction, foru50.5 andt50.
3-6
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METASTABLE LATTICE OF DROPLETS IN PHASE . . . PHYSICAL REVIEW E 65 061803
lution for c satisfies the condition of applicability of th
Landau expansion, Eq.~8!.

In order to get further insight into the physical meaning
our droplet solution, we take note of the fact that the in
grand in Eq.~29! can be interpreted as the Boltzmann weig
of droplets corresponding to a givenl. The one-to-one rela
tion between the eigenvaluel and the radius of the drople
R, Eq. ~41!, allows us to write the Boltzmann weight o
droplets with sizes in the interval (R,R1dR) in the form
r(R)(V/R3)dR/R, whereV is the volume of the system an
the dimensionless distribution function of droplets of sizeR
is defined by

r~R!52DS2@l~R!#expH 2S@l~R!#2
Edrop@l~R!#

kBT J .

~51!

In the range 0,t,tD this distribution is sharply peake
aboutR* 5R(l* ), with R extending up to a cutoffRmax that
corresponds to the maximal value ofulu for which a droplet
solution exists,lc50 ~see Fig. 4!. Since the amplitude of the
ground state solutionc0 vanishes in the limitlc50, the
ground state dominance approximation that leads to Eq.~27!
breaks down. Att5tD the values ofR* andRmax coincide
and abovetD the distribution is monotonically increasin
with R. Rmax increases monotonically witht and diverges as
t→0.

Notice that once a droplet of radiusR* is formed, it can
only decay if, in the process of thermal fluctuations,
reaches the critical sizeRmax. Since the decay time is pro
portional to the ratior(R* )/r(Rmax), inspection of Fig. 4
shows that it increases dramatically as the spinodal is
proached.

Away from the critical point, the characteristic dimensio
of a droplet is of orderaAN and it diverges asuf̄2f̄cu21 as
the critical composition is approached~see Fig. 5!.

IV. LATTICE OF DROPLETS

The many-droplet problem is prohibitively difficult an
its exact solution is beyond the scope of this work~for an
attempt to study the global equilibrium problem, see R
@13#!. In the following, we will assume that the general s
lution c(x) can be written as a superposition of many sing

FIG. 4. Distribution function of the droplet radii fort5tD

~curve 1!, 0,t,tD ~curve 2!, and t50 ~curve 3!. The value of
Rmax for each of the curves is shown by a circle.
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droplet contributions, Eq.~B1!, with parameters treated a
variational coefficients that minimize the free energy of t
interacting many-droplet system. In order to understand h
droplets will be distributed in space, one has to determ
their interaction. Consider two droplets and assume for s
plicity that both have the most probable sizeR* correspond-
ing to ground state eigenvaluel* . The droplets are centere
about pointsx1 and x2, respectively, such that the distanc
between themux12x2u is large with respect to 2R* . The
field c(x) that describes this configuration can be written

c~x!5cdrop~x2x1!1cdrop~x2x2!. ~52!

Substituting this expression into Eq.~20!, we find the energy
of the two-droplet configuration,

E52Edrop1Eint~x12x2!, ~53!

where the main contribution to the interaction energy
well-separated droplets@the contributions that contain linea
terms incdrop(x12x) or cdrop(x22x) vanish because thes
functions minimize the energy functional, Eq.~20!# is

Eint~x12x2!5
g4

4 E dxcdrop
2 ~x12x!cdrop

2 ~x22x!.

~54!

When the distance between neighboring droplets,ux1
2x2u, is large with respect to their characteristic sizeR*
5a/At2l* , we can use the asymptotic form of the functio
cdrop(x), Eqs.~B1! and~B5!. Calculating the integral in Eq
~54! we find

Eint~x12x2!5
9~l* !2a3

g4~t2l* !2

p3a

ux12x2u
expS 2

2Atux12x2u
a D .

~55!

Since the above expression is positive definite we concl
that droplets always repel each other and that the Coulo
like ux12x2u21 interaction is screened on a distance of ord
of the correlation lengthj5a/At, Eq. ~B6!.

When the blend is quenched into the regiont,tD ~indi-
cated by the arrow in Fig. 1! in which the free energy wel
corresponding to an isolated droplet is much deeper t
kBT, we expect that droplets will appear spontaneously in
entire volume of the sample. This process will continue un

FIG. 5. Radius of droplet as a function of mean volume fractio
for u50.5 andt50.
3-7
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 65 061803
the free energy reduction due to droplet formation is b
anced by interdroplet repulsion. The presence of strong~the
interaction between the droplets at separations of the orde
their dimensions is much larger thankBT) long range
Coulomb-like repulsion resembles the interaction betw
highly charged colloids and raises the possibility that
droplets form a Wigner crystal with lattice spacing mu
larger than their size. The analogy is incomplete since in
case both the number of droplets and their shape can
adjusted in order to reduce the repulsion and minimize
free energy. In the following, we shall not consider the de
cate questions of long range order and symmetry of the d
let lattice, and will characterize it by an effective coordin
tion number z and a characteristic distancel between
neighboring droplets~see Fig. 6!.

In order to account for effect of interdroplet repulsions
the shape of individual droplets, we use Feynman’s va
tional principleDF<DFvar , whereDF and DFvar are the
true and the variational free energies of the droplet latt
respectively. The latter is calculated using a trial fie
cvar(x), chosen as a superposition of many single drop
contributions, Eq.~B1!, with coordinates of the center o
mass$xi% corresponding toK lattice points,

cvar~x!5(
i 51

K

cdrop~x2xi !. ~56!

The functioncdrop(x) is determined by Eq.~56! in which the
experimentally measurable parametert is replaced by a
variational parametertvar . Substituting Eq.~56! into the ef-
fective Hamiltonian, Eq.~20!, we find the energy of a lattice
of droplets,

Hh@cvar#5KFEdrop1~t2tvar!
]Edrop

]tvar
G1(

iÞ j
Eint~xi2xj !,

~57!

where Edrop is the energy of single droplet configuratio
given in Eq.~B8!, with the substitutiont→tvar . The values
of l andtvar are found from the condition that they minimiz
the variational lattice free energy

DFvar5Hh@cvar#1kBTKS~l!. ~58!

FIG. 6. Schematic contour plot of a two-dimensional c
through the lattice of droplets, in the vicinity of the spinodal~the
coutours describe lines of equal volume fractionf).
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Since the droplet phase disappears att.tD , we will con-
sider sufficiently deep quenches to the vicinity of the sp
odal, for whicht!tD . Assuming thattvar!ulu we find that
l coincides with the ground state eigenvaluel* of the single
droplet solution. Minimizing Eq.~58! with respect totvar
and l we get

tvar.
C2~1!

4
ul* u.0.19ul* u, l 5

a

2Atvar

ln~3zp2!.

~59!

This confirms the self-consistency of the assumptionl
@R* .aul* u21/2 and tvar!ul* u used in the derivation of
Eq. ~59!.

V. DISCUSSION

Our analysis shows that a new type of metastable s
can form when a homogeneous polymer blend undergoe
off-critical quench to the vicinity of the mean field spinoda
This state consists of spherical droplets each of which co
sponds to a deep local minimum~of order ANkBT) of the
free energy, compared to the initial homogeneous phase.
radius of the droplets diverges and the deviation from
mean concentration vanishes with the approach to the cri
point. Away from the critical point, a finite concentratio
contrast between the droplet and the background devel
and its radius decreases and approaches polymer dimens
We find that the interaction between droplets is purely rep
sive, of a screened Coulomb type, and conclude that clos
the spinodal such droplets will form spontaneously eve
where inside the volume of the blend. Although detailed co
siderations regarding the possibility of long range order
the resulting droplet ‘‘lattice’’ are beyond the scope of th
work, the analogy with Wigner crystals suggests the prese
of at least short range liquidlike order. Even though the l
tice of droplets has a higher free energy than that of the
coexisting homogeneous phases of different polymer conc
trations, the height of the free energy barrier for the disso
tion of a droplet diverges asANkBT in the limit of high
molecular weight, suggesting that the droplet phase may
practically stable on experimentally accessible time sca
Apart from its fundamental importance, the existence of su
a long-lived droplet phase may have interesting practical
plications in polymer composites technology since it impl
that one can, by an appropriate choice of parameters, l
the segregation of the components of the blend to len
scales in the range of hundreds of angstroms while keep
the mixture of two high molecular weight polymers macr
scopically homogeneous.

A schematic phase diagram of a polymer blend based
the above considerations is presented in Fig. 7. Notice
even though droplet solutions have no peculiarities at
spinodal, strictly speaking, our thermodynamic consid
ations break down somewhere beyond the limit of stability
the homogeneous phase, and one must go beyond the La
expansion, Eq.~8!, and consider the complete nonline
problem.

We would like to stress that even though our prediction

t

3-8
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METASTABLE LATTICE OF DROPLETS IN PHASE . . . PHYSICAL REVIEW E 65 061803
a metastable droplet lattice appears to be supported by
scattering and microscopy observations of arrested dro
growth in Refs.@2# and @3#, these experiments report obse
vations of domains of size exceeding 10mm that form during
the late stages of phase separation, and are unrelated t
droplets whose sizes and separations are smaller by t
orders of magnitude~of the order of polymer size!. The latter
can be observed by neutron and x-ray scattering on poly
blends in which one of the polymeric components is label
To the best of our knowledge, the only published neut
scattering study of off-critical quenches into metastable
unstable regions of the phase diagram was done on a ter
blend of two model polyolefins~one of the components wa
deuterated! and a copolymer@14#, to which our theory is not
directly applicable. Although several peaks with amplitu
decreasing with increasing wave vectors were observed
small-angle neutron scattering~SANS! for quenches into the
metastable region@see Fig. 1~b! in Ref. @14##, the corre-
sponding wavelengths were an order of magnitude lar
than polymer dimensions. In a recent unpublished SA
study on a binary blend, a peak in the scattering develo
rapidly following a pressure quench to the vicinity of th
spinodal @15# ~no scattering peaks were observed
quenches into the metastable region outside the spino!.
While the reported observation that the length scale of
‘‘nucleating entities’’ does not increase with the approach
the spinodal, is inconsistent with classical theories of nuc
ation and spinodal decomposition, it agrees with our pred
tions. However, since the smallest length scale reporte
this SANS study (400 Å) exceeds the radii of gyration
the polymers (160 Å), a detailed comparison with o
theory requires extending the experiment to larger scatte
wave vectors or increasing the molecular weight of the co
ponents of the mixture. The latter alternative has the adv
tage that since the Ginzburg number decreases with incr
ing N, the validity of our mean field approximation
improves with increasing degree of polymerization. Worki
with very high molecular weights may in fact be necess
for observing the predicted behavior, since numerical sim

FIG. 7. Schematic phase diagram. In the CN region betw
lines 1 ~binodal! and 3, the initial homogeneous phase deca
through the formation of critical nuclei. The LD region correspon
to the metastable lattice of droplets and extends from line 3
somewhere above the broken line 2~spinodal!. Spinodal decompo-
sition ~SD! takes place in the region limited by line 4. The doma
between the LD and SD regions~question mark! is outside the
scope of the present work.
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lations suggest that the Ginzburg number in blends is un
pectedly large for values ofN commonly used in experi-
ments@16#.

A possible criticism of our analysis is that the de Genne
Flory–Huggins free energy, Eq.~1!, does not provide a sat
isfactory description of the blend on length scales of
order of polymer dimensions and that a more refined the
~see, e.g., Refs.@17# and@18#! is needed. While this is strictly
true, the derivation of the droplet solution is based only
the GL Hamiltonian, Eq.~8!, which is the generic phenom
enological functional for the description of first order pha
transitions. The only polymer-specific characteristic is t
small magnitude of the Ginzburg number or, equivalen
the anomalously small amplitude of thermal fluctuations
the vicinity of the spinodal. This guarantees the validity
mean field arguments that allow the replacement of the t
cubic inc in the original GL Hamiltonian by a random fiel
that acts as an attractive potential that leads to the appear
of localized droplet solutions. We would like to caution th
while the derivation of the single droplet solution is robu
the validity of the tentative analysis of the lattice of drople
in Sec. IV is open to question and further analytical a
numerical studies of this collective state are clearly nec
sary. If our conjectures concerning the lattice of droplets
correct, metastable droplet phases in the vicinity of the sp
odal are expected in other physical systems described by
Hamiltonian Eq.~8! and characterized by a small Ginzbu
number, such as3He–4He mixtures@19#, and magnetic ma-
terials in which there are competing antiferromagnetic a
ferromagnetic interactions@20#.
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APPENDIX A: GOLDSTONE MODES OF THE DROPLET

In order to utilize standard methods of theoretical so
state physics developed in the context of electron local
tion in a random field, we first derive a field-theoretical re
resentation for the density of statesg(l)5^d@l
2l0(h)#&h , Eq. ~30!.

We begin with the equality

d@l2l0~h!#52
1

p
Im

1

l2l0~h!1 i0
, ~A1!

where i0 denotes limi« as « approaches zero from above
and represent the two-point correlator of the fieldc(x) as

^c~x1!c~x2!&5(
k

ck~x1!ck~x2!

l2lk~h!1 i0
. ~A2!

n
s

o
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SERGEY PANYUKOV AND YITZHAK RABIN PHYSICAL REVIEW E 65 061803
The average in the above expression is taken with the we
exp(2Hh

(2)@c#/kBT), where the quadratic contribution to th
HamiltonianHh@c#, Eq. ~20!, is given by

Hh
(2)@c#

kBT
5E dxFt2h2l2 i0

2
c21

a2

2
~¹c!2G . ~A3!

Since we are interested in a situation when the ground s
dominance approximation is valid, we only keep thek50
contribution in Eq.~A2!. Taking into account the normaliza
tion condition, Eq.~23!, we find from Eqs.~A1! and ~A2!,

d@l2l0~h!#.2
1

pE dx Im G0~x,x!, ~A4!

G0~x1 ,x2!5 lim
n→0

E DcW c1~x1!c1~x2!e2Hh
(2)[cW ] ,

where integration goes overn-component field cW
5$c1, . . . ,cn%. Substituting this expression into Eq.~30!
and integrating over the auxiliary fieldh(x), using Eq.~17!,
we find

g~l!52
1

pE dx Im G~x,x!, ~A5!

G~x,x!5 lim
n→0

E DcW c1~x!c1~x8!e2H(3)[cW ] , ~A6!

where the effective Hamiltonian~up to cubic order inc) is
given by

H (3)@cW #5E dxFt2l2 i0

2
cW 21

a2

2
~¹cW !22

g3

6
~cW 2!3/2G .

~A7!

Even though we are interested in the density of states a
ciated with the minimal eigenvaluel0 of Eq. ~22!, our result,
Eq. ~A5!, is more general and gives the contribution of
the excited modes of the droplet~deviations from spherica
shape!.

It is easy to check that the steepest descent evaluatio
the integral, Eq.~A5!, gives g(l).e2S(l) where S(l)
5mincH(3)@cW # is given in Eq.~43! and thatH (3)@cW # is mini-
mized by the instanton configuration of the fieldcW ,

cW inst~x!5c inst~r !eW , c inst~r !5
t2l

g3
x0S rAt2l

a D .

~A8!

HereeW is an arbitrary unit vector inn-dimensional ‘‘isotopic’’
space.

In order to calculate the preexponential factor we need
take into account contributions from excited states, with
genvalues larger thanl0. We expand the effective Hamil
tonian about the instanton configuration,dcW (x)5cW (x)
2cW inst(r ) @21#,
06180
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dH (3)@cW #5
1

2E dx(
i j

dc iM i j dc j . ~A9!

The operatorM of this quadratic form can be decompos
into transverse and longitudinal parts,

Mi j 5MLeiej1MT~d i j 2eiej !, ~A10!

ML5t2l2a2¹22g3c inst~r !,

MT5t2l2a2¹22
1

2
g3c inst~r !.

Introducing the orthonormal set of eigenfunctions of the o
eratorsML andMT

MLck
L5lk

Lck
L , MTck

T5lk
Tck

T , ~A11!

we expanddcW (x) over these normal modes,

dcW ~x!5cL~x!eW1cW T~x!, ~A12!

cL~x!5(
k

ckck
L~x!, cW T~x!5(

l
(

k
cW k

l ck
T~x!,

where then21 vectorscW k
l ( l 51, . . . ,n21) for eachk are

orthogonal to each other and to the vectoreW .
Consider first the Goldstone modes that correspond to

genvalueslk50. Our heuristic derivation below follows tha
of Ref. @22#. The variation of the field induced by the tran
lation of an instanton in regular three-dimensional space b
distancedx0 is

dcW ~x!5cW inst~x¿dx0!2cW inst~x!5(
i

]cW inst~x!

]xi
dx0i .

~A13!

Imposing the standard normalization condition,*dxck
2(x)

51, yields

c1i
L ~x!5JL

21/2]c inst~x!

]x
, JL5E dxF]c inst~r !

]xi
G2

.

~A14!

Comparing Eqs.~A12! and ~A13!, we find

dc1i5JL
1/2dx0i ~A15!

for each one of three translational modes. Since the eig
value l1

L50 of the Schro¨dinger equation, Eq.~A11! for
c1

L(x) is degenerate~there are three eigenfunctions corr
sponding to this eigenvalue!, we conclude that it does no
correspond to the nondegenerate ground state and tha
latter should have a negative eigenvalue,l0

L,0. In the lan-
guage of atomic physics, translational Goldstone modes
respond to triply degenerate~dipolar! p states, while the
ground state is a spherically symmetrics state.
3-10
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METASTABLE LATTICE OF DROPLETS IN PHASE . . . PHYSICAL REVIEW E 65 061803
Now consider rotational modes, which correspond to
rotation of unit vectoreW ~in the n-dimensional ‘‘isotopic’’
space! by an arbitrary vectordeW l , orthogonal to the vectoreW ,

deW l
•eW50. ~A16!

This rotation is determined by then21 independent angles
l 51, . . . ,n21. The variation of the field induced by an in
finitesimal rotation,eW→eW1deW l , is

dcW ~x!5(
l

c inst~r !deW l5(
l

JT
1/2c0

T~x!deW l , ~A17!

where the rotational eigenfunction is

c0
T~x!5JT

21/2c inst~x!, JT5E dxc inst
2 ~r !. ~A18!

Comparing Eqs.~A12! and ~A17!, we find

dcW0
l 5JT

1/2deW l ~A19!

for each one ofn21 rotational modes, which correspond
n21 independent angles that characterize the orientatio
the vectoreW .

Calculating the Gaussian integrals over allck in Eq. ~A6!,
we find the instanton contribution to the functionG(x1 ,x2),

G~x1 ,x2!

5 lim
n→0

e2S(l)JL
3/2JT

(n21)/2)
kÞ1

S p

lk
LD 1/2

)
kÞ0

S p

lk
TD (n21)/2

3E dx0E deWc inst~x1Àx0!c inst~x2Àx0!. ~A20!

Sincel0
L,0, this contribution is imaginary. Using Eq.~A8!

we can easily estimate the Jacobians,

JL.S~l!/a2, JT.S~l!/~t2l!. ~A21!

Expression~A20! can be further simplified by means of d
mensionless analysis if we notice thatlk

L and lk
T are both

proportional tot2l. Substituting Eq.~A20! into Eq. ~A5!
and taking the limitn→0, we arrive at Eq.~46!.

APPENDIX B: NUMERICAL MINIMIZATION
OF THE ENERGY

In the following we carry out numerical minimization o
the energy functional, Eq.~20!. Since the ground state solu
tion is spherically symmetric and therefore depends on
radial coordinater only, it is convenient to express it throug
a dimensionless functionxm(t) of the dimensionless lengt
t5rAt2l/a,

cdrop~r !5A26l

g4
xmS rAt2l

a D . ~B1!
06180
a
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Minimizing the Hamiltonian, Eq.~20!, with respect toc(r )
yields the equation

xm9 12xm8 /t5~12m2x!xm1mxm
3 , m52l/~t2l!,

~B2!

with boundary conditions

xm8 ~0!50, xm~ t→`!50. ~B3!

Comparing Eqs.~B2! and ~37! we conclude thatx0(t)
5x(t).

At small t the solution of Eq.~B2! can be expanded as

xm~ t !5xm~0!F12
x~0!211m2mxm

2 ~0!

6
t21•••G ,

~B4!

while for t→` it decays as

xm~ t !.t21e2A12mt. ~B5!

We conclude that in contrast to the variational solutio
Eq. ~21!, the functioncdrop(r ) has two characteristic scale

R5a/At2l and j5a/At. ~B6!

In general, forl,0 we haveR,j, and the two lengths
coincide only in the case of a critical droplet,l50. Accord-
ing to our analysis,R determines the characteristic size of t
potential well@see Eq.~41!#, while j is the correlation radius
of the system, which diverges at spinodal. Inspection of
~B2! shows that it can be simplified in two limiting case
For l50 ~i.e., m50) this equation reduces to Eq.~37! and
its solution coincides with the variational one,x0(t) @curvea
in Fig. 2#. In the limit of smallt(!ulu) that corresponds to
m→1, numerical calculations show that the solution fact
izes into a product of functions ofR and ofj,

cdrop~r !5A26l

g4
x1S r

RD S 11
r

j De2r /j, ~B7!

where the solutionx1(t) of Eq. ~B2! with m51 decays as a
power,x1(t);t21 as t→` ~see curveb in Fig. 2!.

Substituting the numerical solution forcdrop(r ) into
Hamiltonian Eq.~20!, we find

Edrop~l!

kBT
52

6pa3l2

g4~t2l!3/2
CS 2l

t2l D ,

C~m!5E
0

`

dtt2xm
4 ~ t !, ~B8!

which has the same form as that of the variational ene
Eq. ~47!, with C5C(m50) replaced byC(m).
3-11
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